

Analog Devices Welcomes Hittite Microwave Corporation

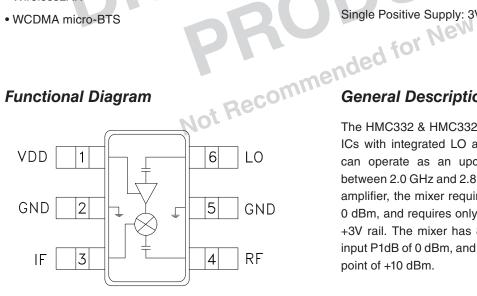
NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Typical Applications

The HMC332 / HMC332E is ideal for:

- MMDS
- PCMCIA
- WirelessLAN
- WCDMA micro-BTS

Features


Integrated LO Amplifier w/ Pdiss: < 20 mW

Conversion Loss / Noise Figure: 8 dB

Low LO Drive Level: 0 dBm

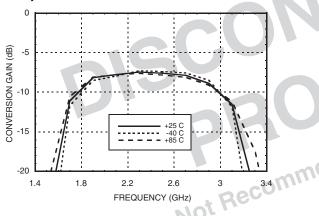
Single Positive Supply: 3V to 5V

Functional Diagram

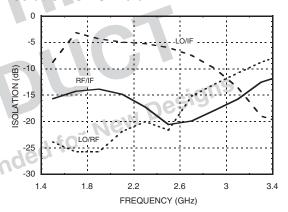
General Description

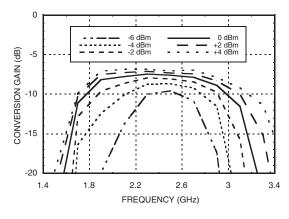
The HMC332 & HMC332E are single balanced mixer ICs with integrated LO amplifiers. This converter IC can operate as an upconverter or downconverter between 2.0 GHz and 2.8 GHz. With the integrated LO amplifier, the mixer requires an LO drive level of only 0 dBm, and requires only 6 mA from a single positive +3V rail. The mixer has 8 dB of conversion loss, an input P1dB of 0 dBm, and an input third order intercept point of +10 dBm.

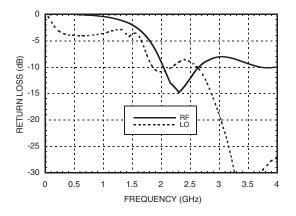
Electrical Specifications, $T_{\Delta} = +25^{\circ}$ C

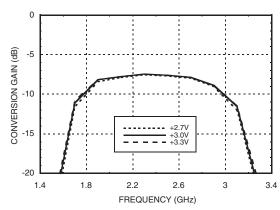

Parameter	IF = 100 MHz LO = 0 dBm & Vdd = +3V			Units
	Min.	Тур.	Max.	
Frequency Range, RF & LO	2.0 - 2.8		GHz	
Frequency Range, IF	DC - 1.0		GHz	
Conversion Loss		8	10	dB
Noise Figure (SSB)		8	10	dB
LO to RF Isolation	11	20		dB
LO to IF Isolation	2	5		dB
RF to IF Isolation	11	17		dB
IP3 (Input)	4	10		dBm
1 dB Compression (Input)	-4	0		dBm
Supply Current (Idd)		6		mA

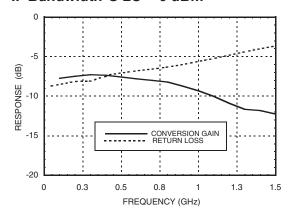
^{*} Unless otherwise noted, all measurements performed as downconverter, IF= 100 MHz.



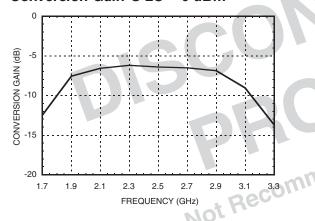

Conversion Gain vs. Temperature @ LO = 0 dBm

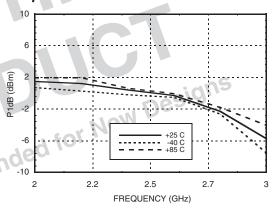

Isolation @ LO = 0 dBm

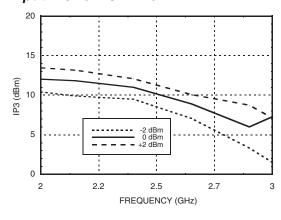

Conversion Gain vs. LO Drive

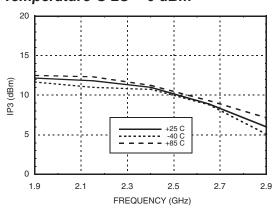

Return Loss @ LO = 0 dBm

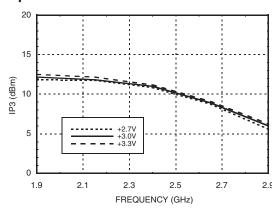
Conversion Gain vs. Vdd @ LO = 0 dBm

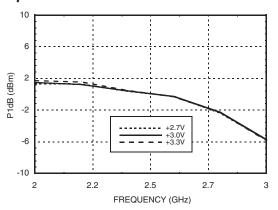

IF Bandwidth @ LO = 0 dBm




Upconverter Performance Conversion Gain @ LO = 0 dBm


Input P1dB vs. Temperature @ LO = 0 dBm


Input IP3 vs. LO Drive*


Input IP3 vs. Temperature @ LO = 0 dBm*

Input IP3 vs. Vdd @ LO = 0 dBm*

Input P1dB vs. Vdd @ LO = 0 dBm

^{*} Two-tone input power= -10 dBm each tone, 1 MHz spacing.

MxN Spurious @ IF Port

	nLO				
mRF	0	1	2	3	4
0	xx	-11	8	8	43
1	12	0	31	34	48
2	41	35	39	32	45
3	>74	64	>74	50	67
4	>74	>74	>74	71	67

RF = 2.5 GHz @ -10 dBm

LO = 2.4 GHz @ 0 dBm

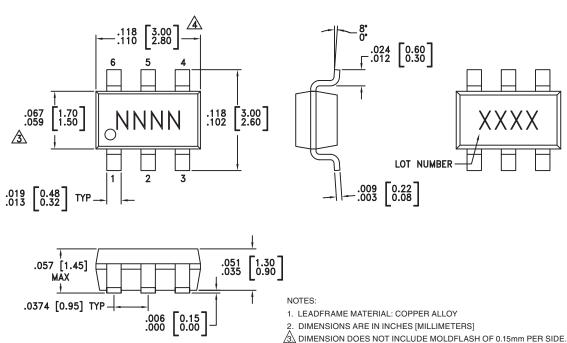
All values in dBc below IF power level.

Harmonics of LO

	nLO Spur @ RF Port			
LO Freq. (GHz)	1	2	3	4
2	24	6	19	32
2.2	20	7	18	44
2.4	20	9	22	43
2.6	19	13	18	40
2.8	14	18	21	38
3	11	15	24	39

LO = 0 dBm

All values in dBc below input LO level @ RF port.


Absolute Maximum Ratings

RF / IF Input (Vdd = +3V)	+13 dBm
LO Drive (Vdd = +3V)	+13 dBm ELECTROSTATIC SENSITIVE
Vdd	5.5V OBSERVE HANDLING PRECA
Continuous Pdiss (Ta = 85 °C) (derate 2.64 mW/°C above 85 °C)	238 mW
IF DC Current	±3 mA
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
	238 mW ±3 mA -65 to +150 °C -40 to +85 °C Recommended for
Outline Drawing	Not He

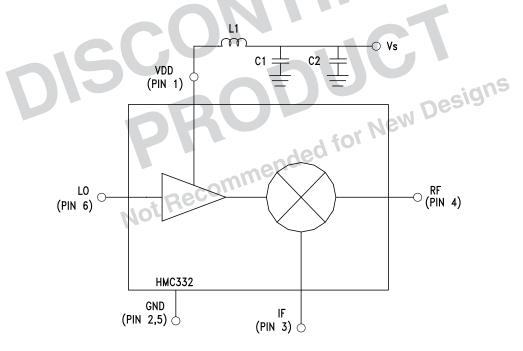
A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Outline Drawing

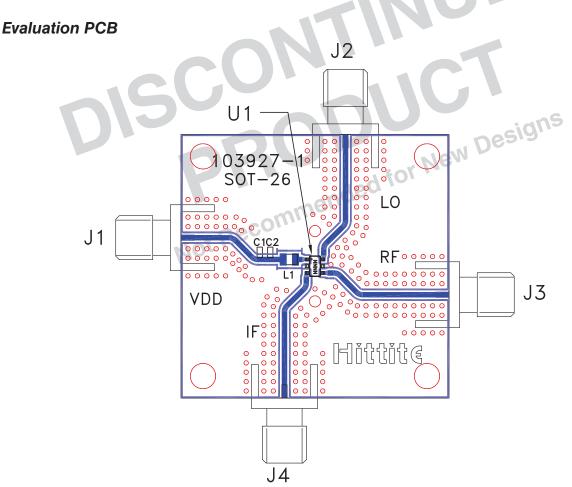
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC332	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H332 XXXX
HMC332E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	332E XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX


Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	Vdd	Power supply for the LO Amplifier. Two external RF bypass capacitors (10 pF & 10,000 pF) and an external inductor 4.7 nH) are required.	Vdd O
2, 5	GND	Ground: Pin must connect to RF ground.	→ GND =
3	IF	This pin is DC coupled. For applications not requiring operation to DC, this port should be DC blocked externally using a series capacitor whose value have been chosen to pass the necessary IF frequency range. For operation to DC, this pin must not source/ sink more than 3mA of current or die non-function and possible die failure will result.	IFO
4	RF	This pin is AC coupled and matched to 50 Ohm from 2.0 - 2.8 GHz.	RFO— — =
6	LO	This pin is AC coupled and matched to 50 Ohm from 2.0 - 2.8 GHz.	Vdd



Application Circuit

List of Materials for Evaluation PCB 105099 [1]

Item	Description	
J1 - J4	PCB Mount SMA RF Connector	
C1	10 pF Capacitor, 0603 Pkg.	
C2	0.01 μF Capacitor, 0603 Pkg.	
L1	4.7 nH Inductor, 0805 Pkg.	
U1	HMC332 / HMC332E Mixer	
PCB [2]	103927 Evaluation Board	

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350